Рекламный блок

Рекламный блок
Болезни животных

Лихорадка желтая

News image

Лихорадка желтая - зоонозная природно-антропургическая особо опасная карантинная вирусная инфекционная болезнь с трансмиссивным механизмом передачи возбудителя. Характеризуется двухфазным течением, интоксикацией, геморр...

Лихорадка долины Рифт (лихорадка Рифт-Ва

News image

Лихорадка долины Рифт - вирусная природно-очаговая болезнь крупного рогатого скота, овец и коз, лошадей, антилоп, обезьян, а также человека, характеризующаяся тр...

More in: Болезни животных

Мифические животные
Авторизация



Общее о животных - Использование энергии

Семейство ВОСЬМИЗУБЫЕ (Octodontidae)

News image

Семейство ВОСЬМИЗУБЫЕ (Octodontidae) крысовидные грызуны средних размеров: длина тела 12—30 см. Хвост (4—18 см) покрыт волосами с кисточкой на конце. Уши сре...

Отряд МОЗОЛЕНОГИЕ (Tylopoda)

News image

Отряд МОЗОЛЕНОГИЕ (Tylopoda) Этот отряд объединяет верблюдов Старого Света и лам, или безгорбых верблюдов, Америки. До недавнего времени этих животных рассмат...



PostHeaderIcon Использование энергии

О животных - Общее о животных

использование энергии

Живая клетка – сложная и непрерывно изменяющаяся структура. Химические реакции, происходящие в ней, можно разделить на две большие группы. В анаболических реакциях крупные молекулы синтезируются из более мелких. Для этого необходимо затратить энергию. В катаболических реакциях молекулы распадаются на более мелкие; обычно этот процесс идёт с выделением энергии. Впоследствии эти мелкие «кирпичики» могут снова использоваться для биосинтеза.

Перечисленные два типа реакции составляют метаболизм клетки.

Выделившаяся в ходе катаболических реакций энергия может быть использована клеткой в различных целях: синтез новых молекул, транспорт, мышечные сокращения и т. п. Энергия может переходить из одной формы в другую; наиболее удобен для использования химический тип энергии, то есть энергия связи в молекулах. Однако, каковыми бы ни были трансформации энергии внутри клетки, её первоисточником служит Солнце. В пищевые цепи солнечная энергия может включиться после того, как будет поглощена автотрофными организмами.

Непосредственно выделение химической энергии происходит в процессе дыхания. Как правило, оно идет в присутствии кислорода; в этом случае дыхание называется аэробным. Дыхательные процессы, протекающие без участия кислорода, называются анаэробными. Дыхание осуществляется в два этапа: взаимодействие с внешней средой (поглощение кислорода и выделение углекислого газа) и окислительные реакции в клетках.

В клетке происходят окислительные реакции трёх типов:

- прямое окисление кислородом;

- окисление за счёт других веществ;

- перенос электронов.

Основным результатом дыхания является образование АТФ в результате фосфорилирования из АДФ и фосфата в митохондриях клетки:

Для этого нужно потратить 30,6 кДж на 1 моль; необходимую энергию доставляет протонный градиент, устанавливающийся по разные стороны мембраны митохондрии (в пространстве между двумя слоями мембраны митохондрий накапливаются положительно заряженные протоны, а в матриксе митохондрий – отрицательно заряженные гидроксильные ионы; именно за счёт этой энергии осуществляется синтез молекул АТФ, который реализуется при движении протонов через фермент мембраны митохондрий АТФ-синтетазу). АТФ (аденозинтрифосфат) – универсальный источник энергии, он может быть доставлен в любое место клетки и гидролизован там с выделением энергии.

Молекула АТФ состоит из аденина, пентарибозы и трёх фосфатных групп. Именно пирофосфатные связи и позволяют запасти в молекуле АТФ столь большое количество энергии.

В дыхательном процессе необходимо наличие окисляющегося вещества (субстрата). Как правило, эту роль играют углеводы, поступающие в клетку в виде питательных веществ, реже – жиры, в исключительных случаях – белки. К примеру, из каждой молекулы глюкозы в итоге получаются две молекулы АТФ, а также две молекулы пировиноградной кислоты 2C3H4O3. В присутствии кислорода эта кислота окончательно окисляется до углекислого газа и воды:

C6H12O6 + 6O2 → 6CO2 + H2O + 38АТФ;

при анаэробном дыхании образуются либо этиловый спирт (например, у дрожжей):

C6H12O6 → 2C2H5OH + 2CO2 + 2АТФ,

либо молочная кислота (например, в мышечных клетках при недостатке кислорода):

C6H12O6 → 2C3H6O3 + 2АТФ.

Коэффициент полезного действия этих реакций составляет около 40 % для аэробного дыхания и молочнокислого брожения и около 29 % для спиртового брожения. Так как часть АТФ при молочнокислом брожении образуется позднее, в присутствии кислорода, то аэробное дыхание можно считать более эффективным, чем анаэробное. Впрочем, КПД любого из этих процессов значительно выше, чем, скажем, КПД парового двигателя (около 10 %). Большинство из описанных процессов протекают в митохондриях.

В сутки энергозатраты человека покрываются пищей, в которой содержится более полукилограмма глюкозы. Так как из каждой молекулы глюкозы образуется 38 молекул АТФ, то за сутки в теле человека образуется и вновь расщепляется более 50 кг АТФ.

Ещё более эффективным является использование жиров. Сначала они при участии ферментов гидролизуются до глицерина и жирных кислот. Окисление одной молекулы глицерина даёт в общем итоге всего 19 молекул АТФ, а вот окисление, к примеру, стеариновой кислоты – целых 147 молекул.

 


Читайте:


Добавить комментарий


Защитный код
Обновить

PostHeaderIcon Зоогеография

Царство Палеогея
 
Мадагаскарская область
 
Индо-Малайская область
 
Полинезийская область
 

PostHeaderIcon Зооподборка

Семейство КОЛЮЧЕШИНШИЛЛОВЫЕ (Echimyidae)

News image

Семейство КОЛЮЧЕШИНШИЛЛОВЫЕ (Echimyidae) Крысовидные грызуны с длиной тела от 8 до 50 см. Хвост от трети до половины ...

ПАКА (Cuniculus paca)

News image

ПАКА (Cuniculus paca) в некоторых местах называется также лапа. Это крупный грызун (длина тела 60—75 см) с коротким хв...

ИХНЕВМОН ЕГИПЕТСКИЙ (Herpestes ichneumon)

News image

ИХНЕВМОН ЕГИПЕТСКИЙ (Herpestes ichneumon) иногда называемый также фараоновой крысой наиболее известен. Он водится в Се...

СУРОК КРАСНЫЙ (Marmota caudata)

News image

СУРОК КРАСНЫЙ (Marmota caudata) средних размеров: длина тела до 57 см; длина хвоста с концевыми волосами составляет ок...

СУСЛИК ТАУНСЕНДА (Citellus townsendi)

News image

СУСЛИК ТАУНСЕНДА (Citellus townsendi) средних размеров: длина тела около 18— 20 см, длина хвоста варьирует от 3 до 7 ...

ЗАЯЦ ДРЕВЕСНЫЙ ЯПОНСКИЙ (Pentolagus furnessi)

News image

ЗАЯЦ ДРЕВЕСНЫЙ ЯПОНСКИЙ (Pentolagus furnessi) мелкий зверёк, длина тела которого около 40 см. Он имеет однотонную чер...